back to article IBM clubs nano noise with graphene sandwich

IBM researchers say they've overcome another obstacle in making the nano material graphene a true star in the semiconductor world. First discovered in 2004, graphene - an atom-thick layer of carbon atoms arranged in a honeycomb lattice - promises the construction of vastly smaller nano electric circuits than even today's …

COMMENTS

This topic is closed for new posts.
  1. soaklord
    Boffin

    Scientists aren't sure why?

    Umm... Could it be the same principles that make a faraday cage work?

  2. vincent himpe

    hmm

    looks more like a capacitive effect between equal charges ...

    if one electron tris to get out of line it's buddies now push it back where it needs to be ( like charges repel each other ) nois is the 'wrong' charge ... so it get's whacked in the head so to speak if it tries goign the wrong way

  3. Murray Pearson
    Boffin

    No headwhacking

    Well, of course. The problem is the boffins couldn't say "whacked in the head" and still sound sagacious.

  4. Eugene Goodrich

    Thanks for specifying the order size!

    I'm tired of everyone saying "an order of magnitude". Since I work with computers (duh), a common order of magnitude is 2. Another common order is 1024. Only a _very_ few of our computers at work have precisely 10 fingers or 10 toes (they've seen a lot of accidents at the mill), so assuming "an order of magnitude" means 10 is a stretch.

    So when I see someone write "magnitude 10", that's a nice change. It means I don't have to guess what the writer meant, and then try to do math based on my guess of some other nerd's mental image.

  5. Ciaran McHale

    Re: Thanks for specifying the order size!

    Eugene Goodrich claimed that "an order of magnitude" is ambiguous: does it mean 2, 10 or 1024? Or some other number. According to www.dictionary.com, it means "An estimate of size or magnitude expressed as a power of ten".

    Regards,

    Ciaran.

  6. Sam
    Coat

    "Nano Letters"

    Won't they be too small to read?

    Nano nano! Ahh, shazbat!

    The red spacesuit please.

  7. Seán

    Translate from Japanese

    "And the solution is as simple using as the buddy system."

    Some pedant can enumerate the flaws.

  8. Anonymous Coward
    Anonymous Coward

    Re: Thanks for specifying the order size!

    The problem is that magnitudes in base 10 are not universal, whatever a particular dictionary happens to say. It is compounded by the fact that order of magnitude comparisons are almost invariably used as approximations. Even if we accept base 10 for a moment, what is the smallest increase that we can describe as a order of magnitude increase? Does it have to be at least 10 times the size or can we round up a little? If so where is the threshold for rounding up?

    Common sense would say that it needs to be a fivefold increase, until you remember that orders of magnitude are inherently logarithmic and therefore maybe sqrt(10) or 3.16x is a better choice, as that would be in the middle of the two on a logarithmic scale. There a lot of difference between scaling a quantity by 3.16 versus the implied 10 yet this is perfectly acceptable even with base 10 magnitudes.

    In short, orders of magnitude are only good for executive summaries and marketing purposes. To make real value judgments much more quantitative terms are needed.

  9. Will Godfrey Silver badge
    Boffin

    orders of crap

    Never mind all this magnitude stuff, what about these 'transistors'? All they show is a mesh. There's a long way to go before a conductor becomes an active device. How are they doing that?

  10. Bryan Reed

    A couple of things

    "Could it be the same principles that make a faraday cage work?"

    Perhaps, in the very general sense that Maxwell's equations and charge conductors are involved. Since this is a quantum system only two atoms thick, the detailed explanation is going to end up being a bit different from any classical model. I'm sure they have some ideas, but I haven't seen the original article yet, so I can't comment on that.

    And as for "order of magnitude," in physical science, so far as I've ever encountered (being a professional in the field), it invariably means a factor of ten. If it occasionally means something different to computer scientists, then this is a cultural difference that I (and I expect many other scientists) have never encountered.

    In practice, when you say "an order of magnitude," you mean "about a factor of 10." It might be 8 or it might be 11, and this is commonly understood among physical scientists. But when you say "a factor of 10" and it's 8, then people could accuse you of dishonesty. So the two phrases don't mean quite the same thing. One is more precise than the other.

  11. Anonymous Coward
    Boffin

    @ nanos

    I read this in popular aluminium smelting monthly march 2007 edition page 23 just after 'Letters to the editor' it was explained without the use of pretentious diagrame which us boys dont need.

  12. Pete
    Paris Hilton

    UTP

    Unshelded Twisted Pair.

    Paris & Britney?

    Too hot to wear a coat today...

  13. Anonymous Coward
    Alien

    Being a ACS member (and thus having access to the article) - and this being my field....

    They have described the difference as being due to the number of state available in the bilayer structure that are not there in the monolayer structure. The basis of conductor -> semiconductor -> insulator is built on the difference in the band structure (energy states) of the various materials. Conductors have electrons in the conduction bands - or there is overlap between conduction and valence bands. At the other extreme is insulators where the band gap is large between the conduction and valence bands. These band structures are set by basic quantum Mechanics. What they have stated is that there are sets of open states in the bilayer material that suppress some of the higher (noise) states available in the monolayer system.

  14. Charles Manning
    Coat

    Why

    @Faraday cage: Possibly

    @UTP: Not. UTP works by twisting the out and return paths closesly together which removes common mode interference. In this case it seems that things are more close to being shileding than an actual UTP.

    Not being a physisist (I probably can't even spell that right) here's my guess....

    THis could also be some sort of capacitive "electron inertia" effect. If you have two bodies close together then moving one electron causes changes in the field which change the electrons in the other body. This means that it is harder to move an electron that is in such a situation than a free floating electron. If an electron is harder to move then it will be less prone to disruptive noise.

    [Mine's the white lab one]

This topic is closed for new posts.

Other stories you might like